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Budianskii has shown in n] that, when load surfaces are singular, then the strain relation- 
ships need not contradict the basic concepts of the theory of plasticity. 

Kliushnikov developed in p] his relations of the theory of flow of a plastic body and 

obtained explicit formulas for strain, applicable to a fairly wide selection of the loading 
processes. 

Ravotnov proposed in p] a two-dimensional model of a strain-hardening plastic body 
and illustrated the peculiarities occurring in relations of the theory of plastic flow when 
nodes are formed on the local surfaces. He showed that relations of the Hencky-Nadai 

strain theory can also be found when the processes of loading are not proportional. A 
number of distinctive characteristics of the behavior of the load function in the two- 
dimensional case was also discussed in [4]. 

We note that several years earlier, Hodge [5] integrated the formulas of the theory of 
flow for the cases when the states of mess corresponded to the singularities of a linear 
approximation for the local surface. 

Below we study the conditions under which the relations of the theory of flow lead, for 

piecewise smooth load surfaces, to Hen&y-Nadai strain relations. 

1. Relations of the theory of plastic flow when load surfaces are piecewise smooth, can 

where c$, fSijg and Uij are components of the rate of plastic strain , plastic strain 

and stress, respectively ; x i are nonholonomic parameters dependent on the process of 

loading ; ki are constants and h k are strain-hardening functions. 
In the following we shall, for simplicity, consider the case of rigid-plastic body and 

shall, consequently, drop the superscript p . 
Expression (1.1) contains first derivatives of fr , therefore we can replace ,& , in the 

six-dimensional space of the symmetric stress tensor UiJ , by any set of functions gi = 0 
such, that when values of the parameters Uu , eij and xl are given, the a&/&Y, and 

a& /a CQ coincide completely. 
fie above requirement can be defined as a property resulting from a localized charac- 

ter of relations of the theory of plastic flow ; instantaneous character of deformability is 
determined by the values of the ilrst derivatives a& /a Uij for given Uij , eij , x i , 
ki and hr and does not depend on other &aracteristics of the load surface . 

6nthefdlowine-tuerkouuaume thaLtheloaf.ifumXiaS “independemof)(~. 
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In order to show clearly our basic reasonong we shall assume in the beginning, that 

the stress and strain state is defined by just two pairs of stress and strain components dif- 

ferent from zero (e. g. the case of torsion or of a skew-plane strain) 

art, ois, elz, el, # 0 (1.‘) 

Then the load function will have the form 

ih. +J,Z? alar +?, er3) = 0 (1.3) 

lrr the stress space functions & = 0 are represented by the corres~ding surfaces, while 

the magnitudes eiJ serve as parameters. Any two independent functions of (1.3) can be 

considered as some finite relations which, in general, will yield explicit formulas 

e12 = 9312 hr %,I, Ql = 'pl3 eJ12~ %) (1.4) 

which define the required strain relations. Expressions of the associated law of flow(U) 

yield, in this case, the hardening functions hk . 
Let us now assume that out of each set of stress and strain components, three are dif- 

ferent from zero (a plane problem) 

%I P (Jo22 I %2* ellI e22, el2#O (1.5) 

If there exist three independent functions 4, = 0 then we can, generally speaking, find 

eij =: Cpij (@II, $2, &h i,i = 1, 2 (W 

If in the threedimensional subspace Q,J a singularity of the local function corresponds 

to a conical point, then that point can be considered as an envelope of tangent planes. 
Only three out of the family of planes with a common point at the apex of the cone are 
independent in the three-dimensional space. Other planes can be obtained as linear 
conbination of the independent ones. Hence, three independent relations gkfat~ I e$=O 

are sufficient to determine the strain relations (1.6). The general case can be approached 

in a similar manner. Strain relations 
eij = Cpi j (%wd (1.7) 

will occur, if six independent finite relations 

gk (oij, ei j> = 0 (f.8) 

exist for a given singularity on the load surface. 

2, Relations of the theory of small elastoplastic strains have the form fl] 
e,, 

eij’ _- 0, ~ij’, eu = @ (%A u=Ke 

3,, E (Sii’bij~“, e,, _= (efjC.ij’)fis, 6 = ‘/@ii, e -= 1/3eteii f2.1) 

5ij’ -: 5ij - 6i j5, eij’ = eij - 6ije 

Let us introduce six independent variables 

_Y =b---lie, Xij zz eij - (1/ K) 6 - (CD (a,) / au) Qij (2.2) 

Magnitudes xtj are, obviously, components of a certain tensor. If the load functions 
have the form 

fk (X, Xij) = 0 (2.3) 

and the roots (x, xi,)= 0 represent a solution of the set of six Eqs. g,(.??, x,,) =0 , 
then the relations (2.1) obviously hold. Load functions (2.3) should be tensor invariant, 

Let us form a set of independent invariants 

X = Q - Kp> xijsij** X*je*j, Xijsjkski, Xijejkeik, XijSjkC?J;i (2.4) 
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Load functions fl = 0 dependent on (2.4) are tensor invariant. If the solutions of the 
set g, = 0 consists of all the invariants of (2.4) equated to zero, then the arbitrariness 
of Ql j and etj implies that Xii = 0 , i. e, we have (‘2.1). Obviously, when the relations 
of the theory of small.elastoplastic strains are proved in this manner, then the require- 
ments of incompessibility K= ~4 exponential dependence 0, =d e, and of proportionality 
of load, are no longer necessary unlike the case of smooth load surfaces [7]. 

3, As an example we shall consider such load functions, that functions g, = 0 can be 
defined in the form x+y=o, X -Y=tO (3.1) 

X ==e,-$rr, Y = e,-- $zl/, 9 = 11 (Fc2 + .%? 

from which the relations of the strain theory follow at once, 

6, = *TX, ev = *rv (3.2) 

Let us now assume, a load, under which only TX and ex are different from zero. Let us 
find the singularities of the load function near the point M( T, , 0) . Relations (3.1) have 
in this case the form 

e T -9 (tx + rv) = 6, ex - 9 (r, - r,) = 0, ev = 0 (3.3) 

Differentiating (3.3) we obtain, at the point M , 

&=*(~Tx~+*) (3.4) 

where the prime accompanying $ denotes differentiation with respect to its argument 
TX2 + Txa , while the subscript 0 denotes the fact that the relevant values correspond to 
the pointM(T,, 0). 

Relation (3.4) gives the value of the angle of the load surface at the point M( TX , 0). 
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